
Programming in Stata
Erin Hengel

Basic syntax

[prefix :] command [varlist] [=exp] 
 [if] [in] [weight] [using filename]  
 [, options]

Source: Social Science Computing Cooperative, University of Wisconsin, Madison

http://www.ssc.wisc.edu/sscc/pubs/sfr-dofiles.htm

Navigating within Stata

cd

mkdir

copy

pwd

dir/ls

erase

rmdir

shell

Macros

Two different ways to define a macro

★ local macroname "text"/number/expression

★ local macroname = "text"/number/expression

What do each of the following macros contain?

★ local mymacro1 2 + 2

★ local mymacro2 = 2 + 2

How do I reference a macro named mymacro?

✦ Local macros: `mymacro’

✦ Global macros: $mymacro

Exercise

✦ Load the example auto.dta dataset (hint: see
the help files for sysuse).

✦ Define a macro called controls which contains
mpg, rep78 and headroom.

✦ Regress price on `controls' for foreign
vehicles and then again for domestic vehicles.

Macro expressions

Compare and contrast the following commands

★ display "two plus two = 2 + 2"

★ display "two plus two `= 2 + 2'"

Exercise

✦ Summarise mpg

✦ Use a macro expression to display

 the mean of mpg is 2.1297

Macro extended functions

Example

local tlab : variable label trunk

display “`lab'"

Syntax

★ local macroname : extended macro function

Exercises

✦ Use a macro extended expression to display the
variable label on make without first assigning it to
a macro name (hint: the colon is equivalent to the
equal sign in the earlier macro expression `=2+2’.

✦ Use a macro extended function to display the
storage type (e.g., int, float, long, str1,…) of
make (hint: see help extended_fcn).

✦ Use a macro extended function to return the value
label associated to foreign when it equals 1.

Parsing strings

✦Counting elements

✦Returning parts of strings

✦Replacing parts of strings

Exercises

✦ Use a macro extended function to count the
number of variables in the macro `controls’

✦ Use a macro extended function to display only
the first variable in `controls’

✦ Use a macro extended function to replace the
variable headroom with displacement

Macro list functions

Syntax

★ local macroname : list function

✦Extract unique elements of lists

✦Alphabetise lists

✦Compare and combine lists

Exercises

✦ Define a macro called animals exactly equal to the following text:
“cat dog cat parrot parrot”. Use a macro list function to
display only the unique elements in `animals’.

✦ Define a macro called groceries with the following elements in it:
pears apples strawberries yoghurt wine cheese.
Use a macro list function to alphabetise `groceries’. Display
your alphabetised `groceries’.

✦ Define a macro called union which contains all members of
`animals’ and `groceries’. Use a macro list function to
display its size.

✦ Sort `union’ and display the position of the element wine
using a macro list function.

Compound double quotes

Example

local answers yes no “do not know”

display “`answers’”

display “yes no “do not know””

Open 
quote

Close 
quote

Example

local answers yes no “do not know”

display `“`answers’”’

Exercises

✦ Use a macro extended function to display all files
in your current directory.

foreach loop

Syntax

foreach thing in list {

 do something

}

Exercises

✦ Loop over the list alpha, beta and gamma and
display each in turn.

✦ Loop over the macro `union’ and display each
element in turn.

Syntax

foreach thing of listype list {

 do something

}

Example

foreach item of local union {

 display “`item’”

}

Exercises

✦ Loop over the macro `controls’ and summarise each
in turn.

✦ Using a loop, create new variables for all items in
`groceries’ equal to a random number between 0
and 1 (hint: use the function runiform()).

✦ Using a loop, display the variable labels of all variables
from make to foreign without typing the variable
names individually.

✦ Using a loop, display all odd numbers between 3 and
13 (hint: see help numlist).

forvalues loop

Syntax

forvalues i = range {

 do something

}

Exercises

✦ Loop from 1 to 10 and display each number in
turn.

✦ Using a loop, create 100 variables named x1,
x2, …, x100 each equal to a random draw from
a standard normal distribution.

✦ Loop through every third x starting at x3 (i.e.,
x3, x6, …, x99) and list its storage type.

while loop

Syntax

while exp is true {

 do something

}

Example

local i = 1

while `i’ < 20 {

 display `i’

 local i = `i’ + 1

}

Exercises

✦ Drop variables x1 through x100 and regenerate
them with a while loop.

✦ Use while to display the numbers 1-20 but use
an expansion operator to increment `i’ (hint:
scroll to the end of the pdf documentation on
extended macro functions).

if clauses

Syntax

if exp is true {

 do this

}

else {

 do that

}

Example

local mymac = 7

if mod(`mymac’,2) == 1 {

 display `mymac’ “ is odd”

}

else {

 display `mymac’ “ is even”

}

Exercises

✦ Redefine `mymac’ so it’s equal to a random
integer between 1 and 99 (hint: use
runiform()*100 to generate a random
number between 1 and 100 and then find a
function which will turn that number into an
integer). Does your if clause still work?

Indexing

Syntax

varname[i]

Exercises

✦ Loop through all observations and display their
make, price, mpg and rep78 in the following
format

Buick Riviera

 Price $10,374 MPG 16 Repairs 3

(hint: check out display’s help files for the
formatting and use _N where appropriate)

Stata’s constants

✦ _N: total number of observations

✦ _n: number of the current observation

Exercises

✦ Load xtline1.dta from the system example datasets.
Keep only those observations that correspond to the first
person. Generate lagcal equal to the lagged value of
calories.

✦ Reload xtline1.dta and generate lagcal equal to the
lagged value of calories for all people in the file (hint: use
by).

✦ Using indices, create a variable which reverse the value of
day (i.e., the last observation’s day is linked to the first
observation’s day, the penultimate observation’s day is
linked to the second observation’s day, etc.). Format your
new variable appropriately.

program

Syntax

program progname {

 whatever your program does

end

Exercises

✦ Create a program called whatsmyname which
displays “hello, my name is”

Example

capture program drop myname

program whatsmyname

 display "hello my name is"

end

Passing arguments

whatsmyname Erin M Hengel
`2’

`1’ `3’

`*’ All arguments

`0’ All arguments (same as `*’)

`1’ First argument

`2’ Second argument

`3’ Third argument

… …

Exercises

✦ Modify whatsmyname to include names the user
types in.

✦ What happens if the user doesn’t type in any
names?

Automatically loaded do-files 
(ado-files)

Stata looks for programs according to this hierarchy

1. Built-in commands

2. Defined programs

3. PLUS folder
✦ downloaded user-defined programs from SSC

4. PERSONAL folder
✦ saved programs you’ve made

5. Current directory

When should I use do-files, programs within do-files and ado-files?

1. Never use Stata interactively.

2. Use do-files for sequential analysis.

3. Store programs in do-files if blocks of code will be used more than once.

4. Store ado-files in a project directory if it’s specific to that project (e.g.,
customised for a particular dataset) but used by more than one do-file.

5. Store ado-files in your PERSONAL ado-directory for programs specific to
you but used in various projects.

6. Store ado-files in the SITE ado-directory for programs your team will use.

7. Submit your ado-file to Boston College Statistical Software Components
(SSC) if you think other people will want to use it, too.

Source: Adapted from Stata NetCourse 151: Indtroduction to Stata Programming

http://www.stata.com/netcourse/programming-intro-nc151/

Exercises

✦ Save whatsmyname as an ado-file in your
current directory.

✦ Change whatsmyname.ado to display the last
name then the first name. Did it work? Why not?

✦ Now change whatsmyname.ado back. Did it
work? Why not?

Example

discard

whatsmyname Iko Hengel

Writing a help-file

✦ If you use a program regularly, a simple help-file
isn’t a bad idea.

✦ help-files are just text-files saved with the same
name as the ado-file it “help” and an .sthlp
ending.

✦ Keep it in the same directory as its
corresponding ado-file.

Source: Adapted from Stata NetCourse 151: Indtroduction to Stata Programming

http://www.stata.com/netcourse/programming-intro-nc151/

Exercises

✦ Write a simple help-file for whatsmyname.ado
and save it. Does it come up when you type
help whatsmyname in the console?

Version control

✦ Start every do-file and ado-program with version
vnum

✦ Stata changes, so some features which worked one
way in one version don’t work that same way in
another version

✦ Including version vnum tells Stata which version to
use when interpreting the do-file or program so it does
what you want it to do

✦ Use a version marker comment

✦ *! myprogram 20 Feb 2014 version 13.1

Source: Adapted from Stata NetCourse 151: Indtroduction to Stata Programming

http://www.stata.com/netcourse/programming-intro-nc151/

Exercises

✦ Modify whatsmyname so it includes the version
of Stata you coded it in and an appropriate
version marker.

Organising do-files

Organising do-files: Stata’s method

✦ One directory per project.

✦ No analysis should be done interactively.

✦ All do-files create logs

✦ Separate dataset creation do-files from analysis do-files, naming the former
cr*.do and the latter an*.do.

✦ do-file execution is organised by a master.do which lists the do-files in the
order that they are run

do file1
do file2
…

✦ Once a do-file has been listed in master.do, it is never, ever edited again.
Instead, add more do-files.

Source: Adapted from Stata NetCourse 151: Indtroduction to Stata Programming

http://www.stata.com/netcourse/programming-intro-nc151/

Organising do-files: Erin’s method for database creation

✦ Don’t alter the raw data or accidentally save over it. The only
save command is at the end!

★ preserve

★ temporary files

✦ Start easy, don’t plan too much and test often.

★ assert

★ confirm

✦ Once satisfied with the end product, throw it all away and recode
the entire thing from scratch.

Source: Adapted from Stata NetCourse 151: Indtroduction to Stata Programming

http://www.stata.com/netcourse/programming-intro-nc151/

Introducing Mata

Should I use Mata?

✦ Probably not

✦ But if you are familiar with R or Matlab or just love
linear algebra, thinking in matrix terms may be
easier for you

✦ Or if you really need to speed up your code

Source: Adapted from Stata NetCourse 151: Indtroduction to Stata Programming

http://www.stata.com/netcourse/programming-intro-nc151/

How do I use it?

✦ Just type mata in the prompt or within your do-
file to invoke a Mata session.

✦ Type end to quit Mata.

Source: Adapted from Stata NetCourse 151: Indtroduction to Stata Programming

http://www.stata.com/netcourse/programming-intro-nc151/

Example

mata

emat = 7 + 3

emat

emat = “Iko” + “Hengel”

emat

Example

emat = (“Iko”,”Hengel”)

emat = (21\08)

mmat = (17\06)

vmat = (25,03\03,11)

emat, mmat, vmat

Example

ivmat = invsym(vmat)

ivmat*vmat

vmat[1,2]

ivmat[1,1]*vmat[2,2]

Example

function add(a,b) return(a+b)

add(vmat,ivmat)

add(“Iko”,”Hengel”)

Least squares regression: regress price on mpg and
rep78

✦ Load data while still in Stata

✦ Create a vector of ones

✦ Drop missing values and variables we aren’t
using

✦ Start Mata

Example

y = st_data(.,”price")

X = st_data(.,(“mpg”,”rep78”,”ones”))

b = invsym(X’X)*X'y

e = y - X*b

n = rows(X)

k = cols(X)

s2 = (e’e)/(n-k)

V = s2*invsym(X'X)

Turn this into a Mata function:

mata:

mata clear

void leastsquaresmata()

{

 calculations

 st_numscalar(“e(mpg)",b[1,1])

}

Exercises

✦ Modify the Mata function so that it accepts any
independent variables

Reshaping data

Wide data

✦ Few observations.

✦Many variables.

✦ One variable uniquely
identifies each
observation.

✦Many variables contain
data across one
dimension.

Long data

✦Many observations.

✦ Few variables.

✦No variable uniquely
identifies each
observation.

✦Each variable contains
data over multiple
dimensions.

From wide to long

id sex inc80 inc81
1 0 5000 5500
2 1 2000 2200
3 0 3000 2000

From wide to long

id sex inc80 inc81
1 0 5000 5500
2 1 2000 2200
3 0 3000 2000

id year sex inc
1 80 0 5000
1 81 0 5500
2 80 1 2000
2 81 1 2200
3 80 0 3000
3 81 0 2000

Syntax: wide to long

id sex inc80 inc81
1 0 5000 5500
2 1 2000 2200
3 0 3000 2000

id year sex inc
1 80 0 5000
1 81 0 5500
2 80 1 2000
2 81 1 2200
3 80 0 3000
3 81 0 2000

i

xij

stubj stubj

j

i j stub

reshape

reshape long stub, i(i) j(j)

Exercise
✦ Load reshape1 (using webuse) and drop ue80, ue81 and
ue82.

webuse	 reshape1,	 clear 
drop	 ue*	

✦ Is the data long or wide? Convert to the other form.

reshape	 long	 inc,	 i(id)	 j(year)	

✦Use a shortcut to convert the data back again.

reshape	 wide

Exercise

✦ Load reshape1 again, but don’t drop anything.

webuse	 reshape1	

✦Reshape from wide to long.

reshape	 long	 inc	 ue,	 i(id)	 j(year)	

✦Use a shortcut to convert it back to long.

reshape	 long	 inc	 ue,	 i(id)	 j(year)

Exercise

✦ Load reshape2 from the web.

webuse	 reshape2	

✦ Try to reshape from wide to long.

reshape	 long	 inc	 ue,	 i(id)	 j(year)	

✦Why did you get an error?

Exercise
✦ Load reshape1 from the web and drop ue81.

webuse	 reshape1 
drop	 ue81	

✦Reshape from wide to long.

reshape	 long	 inc	 ue,	 i(id)	 j(year)	

✦How did reshape handle the missing ue81?

✦Convert the data back again. What happens to ue81?

reshape	 wide

Exercise

✦ Load reshape3 from the web.

webuse	 reshape3	

✦Reshape from wide to long.

reshape	 long	 inc@r	 ue,	 i(id)	 j(year)

Exercise

✦ Load reshape4 from the web.

webuse	 reshape4	

✦Reshape from wide to long.

reshape	 long	 inc,	 i(id)	 j(sex)	 string

From long to wide

id sex kids inc
1 f 0 9000
1 m 0 2000
2 f 1 7000
2 m 1 1000
3 f 2 3000
3 m 2 8000

From long to wide

id kids incm incf
1 0 2000 9000
2 1 1000 7000
3 2 8000 3000

id sex kids inc
1 f 0 9000
1 m 0 2000
2 f 1 7000
2 m 1 1000
3 f 2 3000
3 m 2 8000

Syntax: long to wide

id kids incm incf
1 0 2000 9000
2 1 1000 7000
3 2 8000 3000

id sex kids inc
1 f 0 9000
1 m 0 2000
2 f 1 7000
2 m 1 1000
3 f 2 3000
3 m 2 8000

i j stub
i

xij

stubj stubj

jreshape

reshape wide stub, i(i) j(j)

Exercise

✦ Load reshape6 from the web.

webuse	 reshape6	

✦Reshape from long to wide.

reshape	 wide	 inc	 ue,	 i(id)	 j(year)	

✦Why did you get an error?

Exercise

✦ Load reshapexp1 from the web.

webuse	 reshapexp1	

✦ Try to reshape from long to wide.

reshape	 wide	 inc	 ue,	 i(id)	 j(year)	

✦Why did you get an error?

reshape isn’t working…

✦ Wide to long: does i uniquely identify every
observation?

tabulate	 i 
return	 list

reshape isn’t working…

✦ Long to wide: within each i, is there only one j?

egen	 unique	 =	 group(id	 year) 
tabulate	 unique 
return	 list

reshape isn’t working…

✦ Long to wide: do you mention all variables which
vary within i?

✦ Either way: are i or j string variables?

✦ Type reshape	 error.

Collapsing data

Why do we want to do this?

✦Collapsing data is Stata’s version of pivot tables.

✦ It’s a quick and dirty way to make graphs and
tables.

Exercise

✦Create a dataset with the mean volume for each date.

collapse	 volume,	 by(date)	

✦Create a dataset with the mean volume and value for each date.

collapse	 volume	 value,	 by(date)	

✦Create a dataset with total volume and value for each date and manufacturer.

collapse	 volume	 value,	 by(date	 manufacturer)	

✦Create a dataset with the median value per segment.

replace	 value	 =	 .	 if	 value	 ==	 0 
collapse	 (median)	 value,	 by(segment)

Exercise
✦Create a dataset with the count of value and volume by year and barsize.

recode	 date	 	 	 	 	 ///  
	 (564/575	 =	 2007)	 	 	 ///  
	 (576/587	 =	 2008)	 	 	 ///  
	 (588/599	 =	 2009)	 	 	 ///  
	 (600/611	 =	 2010)	 	 	 ///  
	 (612/623	 =	 2011)	 	 	 ///  
	 (624/635	 =	 2012)	 	 	 ///  
	 (nonmissing	 =	 2013),	 ///  
	 generate(year)  
collapse	 (count)	 volume	 value,	 by(barsize	 year)	

✦Create a dataset with the standard deviation of volume and minimum of value
for each brand per year; retain the manufacturer variable.

collapse	 (first)	 manufacturer	 (sd)	 value,	 by(brand	 year)

!107

Schemes

What is a scheme?

✦Schemes define the overall look of a graph.

✦Within a scheme file, define graph colours, text
sizes, backgrounds, etc.

✦Stata’s default schemes are ugly, but we can
change that

How do I make a scheme?
✦Create a new file called myscheme-‐scheme.scheme and

save it in your personal ado folder.

✦Each entry in a scheme file specifies how a particular
attribute of a graph element looks.

✦ First line should always be #include	 s2color.

✦ help	 scheme describes how to create your own schemes.

✦ help	 scheme	 entries lists all possible definitions to
include in myscheme-‐scheme.scheme.

Exercise
✦Colour graph titles blue.

color	 heading	 blue	

✦ Make graph titles very large.

gsize	 heading	 large	

✦ Colour graph subtitles grey and put them in the north-east corner.

color	 subheading	 gs10 
clockdir	 subtitle_position	 1	

✦ Colour the first plot orange.

color	 p1	 orange

Exercise
✦Colour the background black.

color	 background	 black	

✦ Colour grid-lines as RGB 200 200 200.

color	 major_grid	 “200	 200	 200"	

✦ Make x-axis labels horizontal.

anglestyle	 vertical_tick	 horizontal	

✦ Place graph legends in the south-east corner.

clockdir	 legend_position	 4

