Programming in Stata

Erin Hengel

[prefix :] command [varlist] [=exp] [if] [in] [weight] [using filename] [, options]

Source: Social Science Computing Cooperative, University of Wisconsin, Madison

Navigating within Stata

 cd mkdir сору pwd dir/ls erase rmdir shell

Macros

Two different ways to define a macro

text"/number/expression

* local macroname = "text"/number/expression

What do each of the following macros contain?

★ local mymacro1 2 + 2
★ local mymacro2 = 2 + 2

How do I reference a macro named mymacro?

Local macros: `mymacro'

Global macros: \$mymacro

Exercise

- Load the example auto.dta dataset (hint: see the help files for sysuse).
- Define a macro called controls which contains mpg, rep78 and headroom.
- Regress price on `controls' for foreign vehicles and then again for domestic vehicles.

Macro expressions

Compare and contrast the following commands

★ display "two plus two = 2 + 2"
★ display "two plus two `= 2 + 2"

Use a macro expression to display

the mean of mpg is 2.1297

Macro extended functions

Example

local tlab : variable label trunk
display "`lab'"

Syntax

tocal macroname : extended macro function

Exercises

- Use a macro extended expression to display the variable label on make without first assigning it to a macro name (*hint*: the colon is equivalent to the equal sign in the earlier macro expression `=2+2'.
- Use a macro extended function to display the storage type (e.g., int, float, long, str1,...) of make (*hint*: see help extended_fcn).
- Use a macro extended function to return the value label associated to foreign when it equals 1.

Parsing strings

Counting elements

Returning parts of strings

Replacing parts of strings

Exercises

- Use a macro extended function to count the number of variables in the macro `controls'
- Use a macro extended function to display only the first variable in `controls'
- Use a macro extended function to replace the variable headroom with displacement

Macro list functions

Syntax

Extract unique elements of lists

Alphabetise lists

Compare and combine lists

Exercises

- Define a macro called animals exactly equal to the following text:
 "cat dog cat parrot parrot". Use a macro list function to display only the unique elements in `animals'.
- Define a macro called groceries with the following elements in it: pears apples strawberries yoghurt wine cheese.
 Use a macro list function to alphabetise `groceries'. Display your alphabetised `groceries'.
- Define a macro called union which contains all members of `animals' and `groceries'. Use a macro list function to display its size.
- Sort `union' and display the position of the element wine using a macro list function.

Compound double quotes

Example

local answers yes no "do not know"
display "`answers'"

Example

local answers yes no "do not know"
display `"`answers'"'

Exercises

Use a macro extended function to display all files in your current directory.

foreach loop

Syntax

foreach thing in list { do something }

Exercises

- Loop over the list alpha, beta and gamma and display each in turn.
- Loop over the macro `union' and display each element in turn.

Syntax

foreach thing of listype list { do something }

Example

foreach item of local union { display "`item'" }

Exercises

- Loop over the macro `controls' and summarise each in turn.
- Using a loop, create new variables for all items in `groceries' equal to a random number between 0 and 1 (*hint*: use the function runiform()).
- Using a loop, display the variable labels of all variables from make to foreign without typing the variable names individually.
- Using a loop, display all odd numbers between 3 and 13 (hint: see help numlist).

forvalues loop

Syntax

forvalues i = range { do something }
- Loop from 1 to 10 and display each number in turn.
- Using a loop, create 100 variables named x1,
 x2, ..., x100 each equal to a random draw from a standard normal distribution.
- Loop through every third x starting at x3 (i.e., x3, x6, ..., x99) and list its storage type.

while loop

Syntax

while exp is true { do something }

Example

```
local i = 1
while `i' < 20 {
    display `i'
    local i = `i' + 1
}</pre>
```

- Drop variables x1 through x100 and regenerate them with a while loop.
- Use while to display the numbers 1-20 but use an expansion operator to increment `i' (*hint*: scroll to the end of the pdf documentation on extended macro functions).

if clauses

Syntax

```
if exp is true {
    do this
}
else {
    do that
}
```

```
Example
    local mymac = 7
    if mod(`mymac',2) == 1 {
       display `mymac' " is odd"
    }
    else {
       display `mymac' " is even"
    }
```


Redefine `mymac' so it's equal to a random integer between 1 and 99 (*hint*: use runiform()*100 to generate a random number between 1 and 100 and then find a function which will turn that number into an integer). Does your if clause still work?

Syntax

varname[i]

- Loop through all observations and display their make, price, mpg and rep78 in the following format
 - Buick Riviera

Price \$10,374 MPG 16 Repairs 3

(*hint*: check out **display**'s help files for the formatting and use _N where appropriate)

Stata's constants

• _n: number of the current observation

- Load xtline1.dta from the system example datasets. Keep only those observations that correspond to the first person. Generate lagcal equal to the lagged value of calories.
- Reload xtline1.dta and generate lagcal equal to the lagged value of calories for all people in the file (*hint*: use by).
- Using indices, create a variable which reverse the value of day (i.e., the last observation's day is linked to the first observation's day, the penultimate observation's day is linked to the second observation's day, etc.). Format your new variable appropriately.

program

Syntax

program progname { whatever your program does end

 Create a program called whatsmyname which displays "hello, my name is" Example capture program drop myname program whatsmyname display "hello my name is" end

Passing arguments

All arguments

All arguments (same as `*')

First argument

Second argument

Third argument

. . .

- Modify whatsmyname to include names the user types in.
- What happens if the user doesn't type in any names?

Automatically loaded do-files (ado-files)

Stata looks for programs according to this hierarchy

- 1. Built-in commands
- 2. Defined programs
- 3. PLUS folder
 - downloaded user-defined programs from SSC
- 4. PERSONAL folder
 - saved programs you've made
- 5. Current directory

When should I use do-files, programs within do-files and ado-files?

- 1. Never use Stata interactively.
- 2. Use do-files for sequential analysis.
- **3**. Store programs in do-files if blocks of code will be used more than once.
- 4. Store ado-files in a project directory if it's specific to that project (e.g., customised for a particular dataset) but used by more than one do-file.
- 5. Store ado-files in your PERSONAL ado-directory for programs specific to you but used in various projects.
- 6. Store ado-files in the SITE ado-directory for programs your team will use.
- 7. Submit your ado-file to Boston College Statistical Software Components (SSC) if you think other people will want to use it, too.

- Save what smyname as an ado-file in your current directory.
- Change what smyname.ado to display the last name then the first name. Did it work? Why not?
- Now change whatsmyname.ado back. Did it work? Why not?

Example

discard whatsmyname Iko Hengel

Writing a help-file

- If you use a program regularly, a simple help-file isn't a bad idea.
- help-files are just text-files saved with the same name as the ado-file it "help" and an .sthlp ending.
- Keep it in the same directory as its corresponding ado-file.

 Write a simple help-file for whatsmyname.ado and save it. Does it come up when you type help whatsmyname in the console?

Version control

Start every do-file and ado-program with version vnum

- Stata changes, so some features which worked one way in one version don't work that same way in another version
- Including version vnum tells Stata which version to use when interpreting the do-file or program so it does what you want it to do
- Use a version marker comment
 - *! myprogram 20 Feb 2014 version 13.1

 Modify whatsmyname so it includes the version of Stata you coded it in and an appropriate version marker. Organising do-files

Organising do-files: Stata's method

- One directory per project.
- No analysis should be done interactively.
- ✦ All do-files create logs
- Separate dataset creation do-files from analysis do-files, naming the former cr*.do and the latter an*.do.
- do-file execution is organised by a master.do which lists the do-files in the order that they are run
 - do file1 do file2

. . .

 Once a do-file has been listed in master.do, it is never, ever edited again. Instead, add more do-files. Organising do-files: Erin's method for database creation

 Don't alter the raw data or accidentally save over it. The only save command is at the end!

★ preserve

temporary files

Start easy, don't plan too much and test often.

★ assert

★ confirm

 Once satisfied with the end product, throw it all away and recode the entire thing from scratch.
Introducing Mata

Should I use Mata?

Probably not

- But if you are familiar with R or Matlab or just love linear algebra, thinking in matrix terms may be easier for you
- Or if you really need to speed up your code

How do I use it?

 Just type mata in the prompt or within your dofile to invoke a Mata session.

Type end to quit Mata.

Source: Adapted from Stata NetCourse 151: Indtroduction to Stata Programming

mata
emat = 7 + 3
emat
emat = "Iko" + "Hengel"
emat

```
emat = ("Iko","Hengel")
```

```
emat = (21\setminus 08)
```

```
mmat = (17\setminus 06)
```

```
vmat = (25, 03 \setminus 03, 11)
```

emat, mmat, vmat

```
Example
    ivmat = invsym(vmat)
    ivmat*vmat
    vmat[1,2]
    ivmat[1,1]*vmat[2,2]
```

function add(a,b) return(a+b)
add(vmat,ivmat)
add("Iko","Hengel")

Least squares regression: regress price on mpg and rep78

- Load data while still in Stata
- Create a vector of ones
- Drop missing values and variables we aren't using

X = st_data(.,("mpg","rep78","ones"))

$$b = invsym(X'X) * X'y$$

$$e = y - X * b$$

$$n = rows(X)$$

$$k = cols(X)$$

$$s2 = (e'e)/(n-k)$$

$$V = s2*invsym(X'X)$$

```
Turn this into a Mata function:
     mata:
     mata clear
     void leastsquaresmata()
     {
        calculations
        st_numscalar("e(mpg)",b[1,1])
      }
```

Exercises

 Modify the Mata function so that it accepts any independent variables

Reshaping data

Wide data

Few observations.

Many variables.

- One variable uniquely identifies each observation.
- Many variables contain data across one dimension.

dit Browse	Filter Variable	Properties Snap	shots		
a[1]) 75gOrbit				
	a	january2007	february2007	march2007	8
1	75g0rbit	0	0	0	
2	75gMars	0	0	0	
3	S@gGalaxy	195882.81	171209.61	194460.95	
4	75gGalaxy	2925836.4	2624287.8	2955690.2	
5	150gGalaxy	0	0	0	
6	100g Jupiter	0	0	0	
7	125g Jupiter	375099.26	313476.75	351727.55	
8	50g Pluto	0	0	0	
9	50g Mercury	104.297	90.257	204.583	
10	75g Mercury	296025.93	266585.16	297779.86	
11	50g Moon	114280.01	102283.13	114215.04	
12	75g Moon	992975.81	885221.64	1000368.9	
13	50g Moon White	5714.2735	5700.6845	7176.859	
14	50g Moon Crater	19591.118	17306.23	18480.408	
15	50g Moon Glow	15980.121	14504.769	17009.103	
16	75g Moon Crunchy	0	0	0	
17	50g Moon Dark	362.8705	683.6405	405.7815	
18	50g Moon Smooth	0	0	0	
19	150g Sky Extra	0	0	0	
20	50g Sky	0	0	0	
21	750 Sky	0	11.85	0	

Long data

Many observations.

Few variables.

- No variable uniquely identifies each observation.
- Each variable contains data over multiple dimensions.

Edit Brows	e Filter	Variables P	roperties Snapshots	
	a[1] 100g A	Asterix		
	a	and the second	value	
1	100g	Asterix	0	
2	100g	Asterix	0	
3	1009	Asterix	0	
4	1009	Asterix	0	
5	100g	Asterix	0	
6	1009	Asterix	0	
7	100g	Asterix	0	
8	100g	Asterix	0	
9	1009	Asterix	0	
10	100g	Asterix	0	
11	100g	Asterix	0	
12	1009	Asterix	0	
13	100g	Asterix	0	
14	1009	Asterix	0	
15	100g	Asterix	0	
16	1009	Asterix	0	
17	100g	Asterix	0	
18	100g	Asterix	0	
19	1009	Asterix	0	
20	1009	Asterix	0	
21	1009	Asterix	0	

From wide to long

id	sex	inc80	inc81
1	0	5000	5500
2	1	2000	2200
3	0	3000	2000

From wide to long

id	sex	inc80	inc81
1	0	5000	5500
2	1	2000	2200
3	0	3000	2000

id	year	sex	inc
1	80	0	5000
1	81	0	5500
2	80	1	2000
2	81	1	2200
3	80	0	3000
3	81	0	2000

Syntax: wide to long

reshape long stub, i(i) j(j)

Load reshape1 (using webuse) and drop ue80, ue81 and ue82.

```
webuse reshape1, clear
drop ue*
```

♦ Is the data long or wide? Convert to the other form.

```
reshape long inc, i(id) j(year)
```

Use a shortcut to convert the data back again.

reshape wide

Load reshape1 again, but don't drop anything.

webuse reshape1

Reshape from wide to long.

reshape long inc ue, i(id) j(year)

Use a shortcut to convert it back to long.

reshape long inc ue, i(id) j(year)

Load reshape2 from the web.

webuse reshape2

Try to reshape from wide to long.

reshape long inc ue, i(id) j(year)

Why did you get an error?

Load reshape1 from the web and drop ue81.

webuse reshape1 drop ue81

Reshape from wide to long.

reshape long inc ue, i(id) j(year)

+ How did **reshape** handle the missing **ue81**?

Convert the data back again. What happens to ue81?

reshape wide

Load reshape3 from the web.

webuse reshape3

Reshape from wide to long.

reshape long inc@r ue, i(id) j(year)

Load reshape4 from the web.

webuse reshape4

Reshape from wide to long.
reshape long inc, i(id) j(sex) string

From long to wide

id	sex	kids	inc
1	f	0	9000
1	m	0	2000
2	f	1	7000
2	m	1	1000
3	f	2	3000
3	m	2	8000

From long to wide

id	sex	kids	inc
1	f	0	9000
1	m	0	2000
2	f	1	7000
2	m	1	1000
3	f	2	3000
3	m	2	8000

id	kids	incm	incf
1	0	2000	9000
2	1	1000	7000
3	2	8000	3000

Syntax: long to wide

reshape wide stub, i(i) j(j)

Load reshape6 from the web.

webuse reshape6

Reshape from long to wide.

reshape wide inc ue, i(id) j(year)

Why did you get an error?

Load reshapexp1 from the web.

webuse reshapexp1

Try to reshape from long to wide.

reshape wide inc ue, i(id) j(year)

Why did you get an error?

reshape isn't working...

Wide to long: does i uniquely identify every observation?

tabulate i return list

reshape isn't working...

Long to wide: within each i, is there only one j?

egen unique = group(id year)
tabulate unique
return list

reshape isn't working...

Long to wide: do you mention all variables which vary within i?

- Either way: are **i** or **j** string variables?
- Type reshape error.

Collapsing data

Why do we want to do this?

Collapsing data is Stata's version of pivot tables.

 It's a quick and dirty way to make graphs and tables.

Create a dataset with the mean volume for each date.

collapse volume, by(date)

Create a dataset with the mean volume and value for each date.

collapse volume value, by(date)

Create a dataset with total volume and value for each date and manufacturer.

collapse volume value, by(date manufacturer)

Create a dataset with the median value per segment.

```
replace value = . if value == 0
collapse (median) value, by(segment)
```

Exercise

Create a dataset with the count of value and volume by year and barsize.

recode date	///
(564/575 = 2007)	///
(576/587 = 2008)	///
(588/599 = 2009)	///
(600/611 = 2010)	///
(612/623 = 2011)	///
(624/635 = 2012)	///
(nonmissing = 2013),	///
generate(year)	
<pre>collapse (count) volume</pre>	<pre>value, by(barsize year)</pre>

Create a dataset with the standard deviation of volume and minimum of value for each brand per year; retain the manufacturer variable.

collapse (first) manufacturer (sd) value, by(brand year)

What is a scheme?

Schemes define the overall look of a graph.

 Within a scheme file, define graph colours, text sizes, backgrounds, etc.

 Stata's default schemes are ugly, but we can change that

How do I make a scheme?

- Create a new file called myscheme-scheme.scheme and save it in your personal ado folder.
- Each entry in a scheme file specifies how a particular attribute of a graph element looks.
- First line should always be #include s2color.
- help scheme describes how to create your own schemes.
- help scheme entries lists all possible definitions to include in myscheme-scheme.scheme.

Colour graph titles blue.

color heading blue

Make graph titles very large.

gsize heading large

Colour graph subtitles grey and put them in the north-east corner.

color subheading gs10
clockdir subtitle_position 1

Colour the first plot orange.

color p1 orange

Colour the background black.

color background black

Colour grid-lines as RGB 200 200 200.

color major_grid "200 200 200"

Make x-axis labels horizontal.

anglestyle vertical_tick horizontal

Place graph legends in the south-east corner.

clockdir legend_position 4